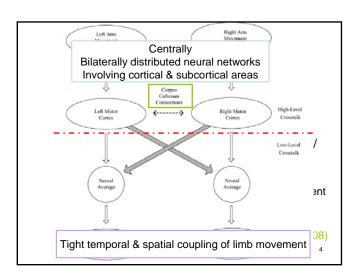
Bilateral Movement Practice in Stroke Motor Rehabilitation

2008 International Occupational Therapy Conference
Ya-fen Chang, MS
Department of Rehabilitation, Shin Kong
Wu Ho-Su Memorial Hospital, Taipei

Introduction


- · Upper limb recovery after stroke
 - 20%~80% incomplete recovery
 - Dependent on <u>initial impairment</u> (Morris et al., 2008)
- Upper limb dysfunction in stroke
 Paresis, loss of manual dexterity
 - ⇒ Activities of daily living (ADL)
 - Feeding, dressing/undressing, bathing etc. (Cauraugh & Summers, 2005)

2

- Neural plasticity (brain reorganization)
- + Motor learning approaches (motor experience)
 - ⇒ Motor recovery
- · Activity-dependent motor interventions
 - Constraint-induced movement therapy (CIMT)
 - Bilateral movement training (BMT)

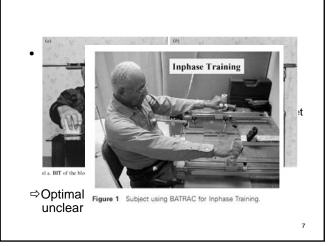
(Schaechter, 2004)

3

- Several studies
 - Therapeutic bilateral training programs
 - ⇒improve short- & long-term unilateral performance of the hemiplegic arm in patients in the chronic poststroke period

5

- · Methodologic limitations
 - Small RCTs

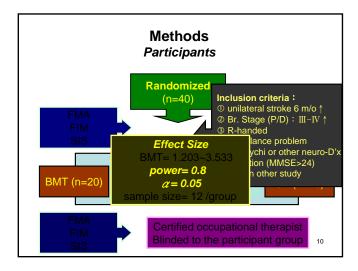

(Cauraugh & Kim, 2002; Luft et al., 2004)

- Case series

(Mudie & Matyas, 1996, 2000; Stinear & Byblow, 2004)

- Single-group design (Whitall et al., 2000)
- ⇒Only limited evidence exist to support bilateral training as a rehabilitation strategy

6


- Initial severity
- · Natural recovery
- Upper limb impairment influences poststroke health-related quality of life (HRQOL)
- · Intensity, duration

8

Purpose

- Comparing effects of bilateral simultaneous movement training (BMT) to conventional training (CT)
- on recovery in stroke patients which mild to moderate chronic hemiparesis
- in terms of upper limb motor performance, independence in ADLs, and HRQOL [International Classification of Functioning, Disability and Health framework (WHO, 1999)]

9

Methods Outcome measures

- Fugl-Meyer Assessment (FMA)
- ⇒ Motor impairment
 - 3-point ordinal scale; upper limb part score (66)
 - Divided FMA into
 - Proximal part: shoulder, elbow, and forearm
 - Distal part: wrist and hand (Duncan et al., 1983; Gladstone et al., 2002)

11

- Functional Independence Measure (FIM)
- ⇒Independent participate in ADLs
 - 6 subscale: self-care, sphincter control, transfer, locomotion, communication, & social cognition
 - 18 items;7-point ordinal scale (126)

(Kidd et al., 1995, Law, 1997)

- Stroke Impact Scale (SIS) ⇒ QOL
 - 59 item self-report scale (ver.3); 5-point ordinal scale
 - 8 functional domains: strength, memory, emotion, communication, ADLs/IADLs, mobility, hand function, & participation

(Ducan et al., 2003)

12

Methods Interventions

- BMT
 - Two upper limbs simultaneously, but independently of each other
 - Reaching, grasping, lifting, placing etc.
- CT
 - Control for duration & intensity
 - Less specific but active therapy: hand function, coordination, balance, compensatory practice etc.

13

СТ

15

Methods Statistical Analysis

- Analysis of covariance (ANCOVA)
 - Test the effects of the BMT group
 - Covariate: pretest score (FMA [P/D], FIM, & SIS)
 - Controlling pretreatment differences
 - Independent variable: group (BMT & CT)

16

Results Characteristics of participants

	BMT (n=2	0)	CT (n	=20)	р
Gender	↑17 ; ♀3		↑16; ♀4		0.07
Age	50.46±10.11		50.70 <u>±</u> 13.93		0.34
Months since stroke	17.10±20.42		21.90±25.47		0.77
Side of lesion	L9;R11		L 13; R 7		0.15
MMSE	28.91 <u>±</u> 1.58		27.42 <u>±</u> 1.88		0.05
Brunnstrom stage (P)	III-IV 3 IV 8 V 9		III - IV IV V	7 2 9 9	0.36
Brunnstrom stage (D)	III-IV 3 IV 8 V 9		III - IV IV V	7 3 9 8	0.36

Results

Descriptive and inferential statistics on outcome measures

	BMT (n=20)		CT (n	ANCOVA		
	pretest	posttest	pretest	posttest	F(1, 38)	р
FMA (total)	45.50±10.35	52.25±9.05	49.75±12.10	50.95±12.79	17.30	.001
Proximal	29.25 <u>±</u> 6.54	32.80 <u>±</u> 5.62	33.60 <u>±</u> 6.60	34.05±6.72	9.91	.003
Distal	16.25±5.68	19.45 <u>+</u> 4.51	16.15±6.52	16.9 <u>+</u> 6.84	7.77	.004
FIM	116.70 <u>±</u> 12.83	119.15 <u>±</u> 10.71	114.30±10.27	116.65 <u>±</u> 8.34	.88	.354
SIS	64.36±15.77	64.22 <u>±</u> 15.55	64.36±9.33	64.92±13.08	.08	.777
strength	39.69±22.61	42.50±15.26	45.63 <u>±</u> 15.59	47.81±16.13	1.94	.153
memory	81.61±15.86	83.04 <u>±</u> 16.22	84.32 <u>±</u> 13.51	88.57 <u>±</u> 12.99	1.04	.359
emotion	62.78±20.76	56,77±19.33	63.61±12.52	62.36±14.63	1.90	.160
communication	89.46±15.17	91.97±12.79	90.18±17.30	88.21±19.53	.96	.389
ADL	66.63±21.65	68.13 <u>±</u> 20.44	66.13 <u>±</u> 17.52	65.00 <u>±</u> 20.00	.56	.460
mobility	86.67±11.21	86.53 <u>±</u> 18.74	83.89 <u>±</u> 19.05	82.36 <u>±</u> 20.85	1.50	.232
hand function	36.00±30.50	43.25 <u>±</u> 33.88	32.00 <u>±</u> 30.67	36.25 <u>±</u> 31.03	.38	.542
social participation	52.03±34.42	41.56 <u>+</u> 31.82	48.59 <u>±</u> 24.43	48.75±27.68	1.62	.210

Discussion

- Compare the effects of bilateral movement training and conventional training on upper limb outcome, ADL, and HRQOL in poststroke chronic hemiparesis patients
- · Partially consistent with study hypothesis
 - BMT improved overall upper limb performance (FMA [overall, proximal, distal]) to a greater extent than CT (based on NDT, compensatory practice, & functional activities with affected or both upper limbs)

20

- · Consistent with previous studies
 - BMT emphasize mass practice on functional tasks
 - provide sensory feedback to promote motor skill re-aquirisition

(Hesse et al., 2003; Desrosiers et al., 2005; Waller et al., 2004; Whitall et al., 2005)

21

- Beneficial effects on FMA did <u>not</u> corroborate some previous studies
 - Diverse
 - Methodologies
 - small sample size, acute/ subacute patients
 - · Treatment protocols
 - intensity/ duration [0.3-2,25 hr/d, 3-5d/wk, 2-8wks]
 - Treatment forms
 - proximal/ distal parts, tasks or augment sensory input
 - Outcomes
 - kinematics, WMFT, BBT, BI, UMAQS, TMS, EMG (Morris et al., 2008; Mudie & Matyas, 2001; Richard et al., 2008; Lewis & Byblow, 2004)

· Speculated neural effect

- Simultaneous activation of both hands
 - Reduce intracortical inhibition & increase intracortical facilitation in both hemispheres
 - Additional facilitation in the affected hemisphere (vs. affected alone)
 - Positive effects for affected upper limb movement pattern and motor skills (Stinear & Byblow, 2002; Waller et al., 2008;

Waller & Whitall, 2008)

22

- BMT did <u>not</u> show obvious enhancement on ADL [FIM] and HRQOL [SIS]
 - Similar to previous studies (other ADL related measures; other HRQOL related measures)
 - BMT did <u>not</u> emphasize forced use of affected hand
 Compensate with unaffected hand (pretest)
 - BMT had <u>fewer</u> experiences on tasks relevant for real-world <u>life</u>
 - ADL have <u>fewer</u> bilateral symmetrical and simultaneous tasks (vs asymmetrical)
 - Associated with small change in HRQOL scores (Luft et al., 2004 [UMAQS]; Morris et al., 2008 [BI, Norttingham Health Profile])

24

Study limitation Future research

- Mild to moderate chronic hemiparesis
 ⇒ generalization population
- Immediate and long-term effects
- Outcome measure
 - Activity-based: Box and Block Test, Action Research Arm Test, Wolf Motor Function Test
 - Objective measures: Kinematic analysis (motor control mechanism), neuroimage (neural reorganization)
- lesion side, site & size, motivation, chronicity, severity, sensitivity of clinical measures

25

Conclusion

- Bilateral movement training compared with conventional training
 - In similar treatment intensity of patienttherapist interactions and therapeutic activities
 - 2 hours/day, 5 days/week, for 3 weeks
 - Support BMT as a rehabilitation strategy to improve upper limb (proximal and distal parts) motor skills

26

Thanks for your listening!

27